摘要

The analytical solutions of the non-steady-state concentrations of species at a planar microelectrode are discussed. The analytical expression of the kinetics of CE mechanism under first or pseudo-first order conditions with equal diffusion coefficients at planar electrode under non-steady-state conditions are obtained by using Homotopy perturbation method. These simple new approximate expressions are valid for all values of time and possible values of rate constants. Analytical equations are given to describe the current when the homogeneous equilibrium position lies heavily in favour of the electroinactive species. Working surfaces are presented for the variation of limiting current with a homogeneous kinetic parameter and equilibrium constant. In this work we employ the Homotopy perturbation method to solve the boundary value problem. Furthermore, in this work the numerical simulation of the problem is also reported using Scilab program. The analytical results are found to be in excellent agreement with the numerical results.

  • 出版日期2012-5

全文