摘要

G protein-coupled receptors (GPCRs), a large eukaryotic protein family, have proved difficult to comprehensively detect and functionally identify by homology searches and domain detection, because they are highly divergent and their sequences share strikingly little similarity. Transmembrane (TM) topology pattern analysis has been used to classify TM proteins, and such patterns are conserved within GPCRs of similar function. Here, we developed a stepwise binary topology pattern (BTP) method for GPCR classification and identification and used it to identify and classify mammalian-type GPCRs in the genomes of 10 different eukaryotic species. A binary topology pattern was obtained for each functional class or group by assigning binary loop threshold lengths of '0' (short loop) or '1' (long loop). The GPCR-classification ability of the BTP method had quite high accuracies for classifying GPCR functions at the class level (Classes A, B, C, Frizzled/Smoothened, Non-GPCR, based on the GPCRDB classification scheme), with many classes being classified with 100% accuracy. Sufficiently high accuracies were also maintained at the functional group level, 0.945 over 15 functional groups. Proteome-wide mammalian-type GPCR searches in 10 eukaryotic genomes (H. sapiens, M. musculus, F rubripes, C. intestinalis, A. thaliana, D. melanogaster, A. gambiae, C. elegans, P falciparum, S. cerevisiae) using the BTP method showed much higher classification/identification in non-mammalian genomes than typical BLAST searches, in which a higher number of sequences were classified as Non-GPCR. This stepwise BTP method should prove useful for the identification and functional classification of GPCRs from the genomes of a wide range of species.

  • 出版日期2004-2

全文