Adaptations in muscle oxidative capacity, fiber size, and oxygen supply capacity after repeated-sprint training in hypoxia combined with chronic hypoxic exposure

作者:van der Zwaard S; Brocherie F; Kom B L G; Millet G P; Deldicque L; van der Laarse W J; Girard O; Jaspers R T*
来源:Journal of Applied Physiology, 2018, 124(6): 1403-1412.
DOI:10.1152/japplphysiol.00946.2017

摘要

In this study, we investigate adaptations 111 muscle oxidative capacity, noer size and oxygen supply capacity in team-sport athletes after six repealed-sprini sessions in normobaric hypoxia or normoxia combined with 14 days of chronic normobaric hypoxic exposure. Lowland elite field hockey players resided at simulated altitude (<= 14 h/day at 2.800-3.000 m) and performed regular training plus six repeatedsprint sessions in normobaric hypoxia (3.000 in: LHTLH; n = 6) or normoxia (0 m: LHTL: n = 6) or lived at sea level with regular training only (LLTL; n = 6). Muscle biopsies were obtained from the m. vastus lateralis before (pre), immediately after (posl-1), and 3 wk after the intervention (post-2). Changes over lime between groups were compared, including likelihood of the effect size (ES). Succinate dehydrogenase activity in LHTLH largely increased from pre to post-1 (-35%). likely more than LHTL and LLTL (ESs = large-very large), and remained elevated in L11TLII at post-2 (-12%) vs. LHTL (HSs = moderate-large). Fiber cross-sectional area remained fairly similar in LHTLH from pre to post-1 and post-2 bill was increased at post-1 and post-2 in LHTL and LLTL (ES = moderate-large). A unique observation was that LHTLH and LHTL. but not LLTL. improved their combination of fiber size and oxidative capacity. Small-to-moderate differences in oxygen supply capacity (i.e.. myoglobin and capillarization) were observed between groups. In conclusion. elite team-sport athletes substantially increased their skeletal muscle oxidative capacity, while maintaining fiber size, after only 14 days of chronic hypoxic residence combined with six repeated-sprint training sessions in hypoxia.
NEW & NOTEWORTHY Our novel findings show that elite teamsport athletes were able to substantially increase the skeletal muscle oxidative capacity in type I and II fibers (+ 37 and +32%, respectively), while maintaining fiber size after only 14 days of chronic hypoxic residence combined with six repeated-sprint sessions in hypoxia. This increase in oxidative capacity was superior to groups performing chronic hypoxic residence with repeated sprints in normoxia and residence at sea level with regular training only.

  • 出版日期2018-6