摘要

This paper proposed a new reduced passive constrained layer damping finite element model. The passive constrained layer damping structure is a sort of sandwich plate made up of a viscoelastic core sandwiched between two elastic faces. The model is built by combining the first shear deformation theory with the Golla-Hughes-McTavish model that takes the frequency dependence of the viscoelastic material property into consideration. Due to the Golla-Hughes-McTavish model, the stiffness, damping and mass matrices are at least doubled, which requires a large amount of calculation. Then, a modified improved reduced system method is proposed to reduce the order of the model. Finally, the proposed reduced model is compared to the Guyan reduction, the mode truncation and the improved reduced system models by two numerical examples. It demonstrates that the proposed modified improved reduced system method is obviously superior to the other three classical methods and the presented passive constrained layer damping model with the Golla-Hughes-McTavish model is an effective and accurate sandwich model, which can be applied to the finite element software.

全文