摘要

Post processing is widely used to improve the photovoltaic performance of organic solar cells. However, high-temperature and long-time release of halogenated solvents are incompatible with future printing manufacturing. Inspired by the dependence of donor/acceptor optical properties on ink temperature, we designed a study to test its effect on photovoltaic performance. We utilize the newly reported nonfullerene ink, poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))]/3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene as a model system, and find that device performance can be improved by heating and then cooling the ink in a specific temperature range. Careful analysis reveals that device improvement comes from the optimized phase miscibility and has a negligible effect on charge-transport properties. We further propose that heating and cooling the ink optimizes the phase formation time, phase distribution, and interphase diffusion in the blend films. Finally, the general nature of this process is demonstrated using a more typical polymer/fullerene system. These findings are important because this effect could potentially lead to progress in organic solar cell manufacturing.