Automatic Detection of Rice Disease Using Near Infrared Spectra Technologies

作者:Wang, Xiaoli*; Zhang, Xiaoli; Zhou, Guomin
来源:Photonirvachak-Journal of the Indian Society of Remote Sensing, 2017, 45(5): 785-794.
DOI:10.1007/s12524-016-0638-6

摘要

The rice disease is one of the most serious injurious factors that cause major loss of rice production and subsequent economy in agricultural industry. This study explored a new method for obtaining information of the rice disease in a short term through model regression methods. The spectrum characteristics of rice leaves under different disease damage were firstly analyzed for its relationship with rice disease level. The sensitive bands of the spectrum for accurately supervising rice diseases were selected with principal component analysis (PCA). The stepwise regression method and BP neural network were both used to establish the spectrum-based models for recognizing rice diseases. Results showed that five major characteristic bands were determined by PCA (990, 1850, 660, 1921, and 1933 nm) for monitoring foliar rice diseases, among which the edge area for red light had the best correlation with rice disease level was also selected as the parameter to establish the model. Specifically, the composite reflectivity of wavelengths between 990 and 1933 nm was negatively related to rice brown spot diseases stress, which was then used to establish the model. Parameters of the red edge area and the ranged reflectivity between 660 and 990 nm were used to establish models for monitoring rice sheath blight diseases. Totally, there were 60 samples employed to build models for identifying the two diseases by the stepwise regression method and the BP neural network method, and the rest 41 ones were used for further model verification. Compared with the stepwise regression analysis, BP neural network was evaluated to perform better with characteristic bands at 660, 990, and 1933 nm. In conclusion, the establishment of the function model in our study can be implemented to monitor rice diseases, which provided a theoretical basis for indirect and rapid monitoring rice diseases.