摘要

With the widely use of wireless sensor network (WSN), the network interference, which caused by the rare spectrum resource and the improper topology structure, has greatly hindered the further development of WSN. Due to the vast size of network interference, the retransmission of information and the waste of residual energy of nodes have become a critical concern. Since the energy of WSN is limited, the solution to energy efficiency, interference and network lifetime has become a significant challenge for WSN. In this paper, we design a distributed topology control and channel allocation algorithm from a game perspective in order to alleviate the interference and balance the energy consumption. Firstly, we study the internal relationship between topology control and channel allocation. Based on the relationship, we propose a united game model which considers transmission power, residual energy and node interference. This game model has been proven to guarantee the existence of Nash Equilibrium. Secondly, based on the untied game model, we develop a Distributed Topology Control and Channel Allocation Algorithm (DTCCAA) which ensures network connectivity and converges to Pareto Optimality via adjusting the transmission power and node channel. Thirdly, the simulation results show that the topology obtained by DTCCAA can not only possess the lower inference and more balanced average residual energy, but also have many other attractive network performances such as the stronger robustness, the better real-time and end-to-end delay.