摘要

This paper summarizes the development of a new permanent magnetic friction damper (PMFD) device designed to protect structures during earthquakes. The device is based on the concept that when two permanent magnetic strips are osculated, magnetic attraction is produced and the magnitude can be adjusted and predicted by changing the area of the contact surface of the strips. Thus, the controlling force of the PMFD device varies continuously with the response of the structure and thereby overcomes the drawbacks of conventional friction dampers, the force models for which are invariable. We performed shaking table tests and numerical studies for a five-story steel frame structure fitted with PMFD devices; the results demonstrate that the new device effectively reduces the seismic response of a structure due to its excellent energy dissipation capacity. Moreover, the controlling force supplied by the new PMFD device can be adaptively adjusted according to the magnitude of the excitations. Therefore, the new PMFD device presents a viable alternative to conventional friction-based earthquake-resistant designs both for new construction and for upgrading existing structures.