摘要

Background/Aims: The development of atherosclerosis is accompanied by escalating inflammation and lipid accumulation within blood vessel walls. ABCA1 plays a crucial role in mediating cholesterol efflux from macrophages, which protects against atherogenesis. This research was designed to explore the effects and underlying mechanisms of apigenin (4',5,7-trihydroxyflavone) on ABCA1-mediated cellular cholesterol efflux and LPS-stimulated inflammation in RAW264.7 macrophages and apoE(-/-) mice. Methods: Expression of genes or proteins was examined by RT-PCR or western blot analysis. Liquid scintillation counting was used to detect percent cholesterol efflux. Cellular cholesterol content was measured using HPLC assay. The secretion levels of pro-inflammatory cytokines were quantified by ELISA assay. Atherosclerotic lesion sizes were determined with Oil Red O staining. The contents of macrophages and smooth muscle cells in atherosclerotic lesion were evaluated using immunohistochemistry. Plasma TC, TG, HDL-C and LDL-C levels in apoE(-/-) mice were evaluated using commercial test kits. Results: Apigenin potently increased ABCA1 expression through miR-33 repression in a dose- and time-dependent manner. Treatment with apigenin significantly increased ABCA1-mediated cholesterol efflux, and reduced TC, FC and CE levels in macrophage-derived foam cells. In LPS-treated macrophages, the expression levels of TLR-4, MyD88 and p-I kappa B-alpha as well as nuclear NF-kappa B p65 were decreased by the addition of apigenin. Moreover, apigenin markedly decreased secretion levels of several pro-inflammatory cytokines. Lastly, in LPS-challenged apoE(-/-) mice, apigenin administration augmented ABCA1 expression, decreased the contents of macrophages and smooth muscle cells in atherosclerotic lesion, reduced miR-33, TLR-4, and NF-kappa B p65 levels, improved plasma lipid profile and relieved inflammation, which results in less atherosclerotic lesion size. Conclusions: Taken together, these results suggest that apigenin may attenuate atherogenesis through up-regulating ABCA1-mediated cholesterol efflux and inhibiting inflammation.