摘要

MicroRNAs (miRNAs) play a considerable role in cancer occurrence and development, and have been identified as promising noninvasive biomarkers. The authors describe a voltammetric method for the determination of the cancer biomarker microRNA-21 (miRNA). It is based on a combination of a universal DNA signal transducer and isothermal target recycling amplification. A hairpin capture probe is bound to the target miRNA to form a duplex structure and to create a toehold in the transducer for initiating the target recycling amplification reaction. In contrast to traditional capture probes, a mismatched site is introduced to improve its ability to capture the target. In order to reduce the complex design procedures of the sequence and widen the applicability of this method, a signal transducer is introduced. Under optimal conditions, response to target miRNA is linear in the 0.5 to 2000 pM concentration range, with a 56 fM. detection limit (at an S/N ratio of 3). In order to characterize the process of target recycling and the stepwise modification of the electrode, real-time fluorescence, agarose gel electrophoresis, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry were used. The results indicate that this isothermal target recycling amplification results in an electrochemical biosensing scheme with wide potential for sensing other bioanalytes.