摘要

1-Deoxynojirimycin (DNJ) is a natural a-glucose analogue from mulberry with promising physiological activity in vivo. Up to the present, the antidiabetic effects of DNJ on lowering blood sugar and accelerating lipid metabolism in mammals were broadly reported, but the specific character of DNJ against insects was vastly ignored. In this study, a toxicological test of DNJ againgst eri-silkworm, Sarnia cynthia ricini was carried out to investigate the potential of DNJ in insect management. Further, a method of nuclear magnetic resonance (NMR) metabonomics and real-time qPCR (RT-qPCR) were performed to analyze the alteration in midgut of eri-silkworm caused by DNJ. The result of toxicology showed that 5% and 10% DNJ could significantly inhibit the development of third-instar larvae on day 1-5, and mass deaths happened in DNJ groups on day 3-5. The quantitative analysis of H-1 NMR in fifth-instar larvae showed that trehalose level increased in midgut of 0,6 and 12 h DNJ groups, while the concentrations of glucose, lactate, alanine, pyruvate, alpha-ketoglutarate and fumarate were reduced in varying degrees. Meanwhile, principal component analysis (PCA) indicated that there were significant differences in the metabolic profiles among 12 h DNJ groups and the control group. In addition, RT-qPCR results displayed that four genes coding alpha-glucosidase, trehalase (THL) and lactate dehydrogenase (LDH) were lowered in expression of 12 h DNJ groups. Simultaneously, THL activity was significantly lowerd in 12 h DNJ groups. These mutually corroborated results indicated that the backbone pathways of energy metabolism, including hydrolysis of trehalose and glycogens, glycolysis and tricarboxylic acid (TCA) cycle were significantly inhibited by DNJ. Thus, the specific mechanism of DNJ efficiently suppressing the growth and energy metabolism of eri-silkworm was explored in this study, providing the potential of DNJ as to the production of botanical insecticide.