摘要

If any severe accident occurs, application of the Severe Accident Management Guidance (SAMG) is initiated by the Technical Support Center (TSC). In order to provide advisory information to the TSC, required safety injection flow rate for maintaining the coolability of the reactor core has been suggested in terms of the depressurization pressure. In this study, mechanistic development of the safety injection flow map was performed by post-processing the core exit temperature (CET) data from MELCOR simulation. In addition, effect of oxidation during the core degradation was incorporated by including simulation data of core water level decrease rate. Using the CET increase rate and core water level decrease rate, safety injection flow maps required for removing the decay and oxidation heat and finally for maintaining the coolability of the reactor core were developed. Three initiating events of small break loss of coolant accidents without safety injection, station black out, and total loss of feed water were considered. Reactor coolant system depressurization pressure targeting the suggested injection flow achievable with one or two high pressure safety injections was included in the map. This study contributes on improving the current SAMG by providing more practical and mechanistic information to manage the severe accidents.

  • 出版日期2016