Development of a risk-informed accident diagnosis and prognosis system to support severe accident management

作者:Ahn Kwang Il*; Park Soo Yong
来源:Nuclear Engineering and Design, 2009, 239(10): 2119-2133.
DOI:10.1016/j.nucengdes.2009.06.001

摘要

RISARD, risk-informed severe accident risk diagnosis system, is a computerized tool developed to improve a severe accident management (SAM) for a nuclear power plant and to effectively support the MCR and the TSC in executing the relevant SAM activities. In order to provide a diagnostic capability to a state of the plant and a prognostic capability for an anticipated accident progression, the system examines (a) a symptom-based diagnosis of a plant damage state (PDS) sequence in a risk-informing way and (b) a PDS sequence-based prognosis of key plant parameter behavior, through a prepared database (DB) containing plant-specific severe accident risk (SAR)-related information. For a given accident, the replicated use of these two processes makes it possible to obtain information about the functional states of the plant and containment safety systems expected at the time of a severe accident as well as future trend of the key plant parameters that are essentially required for taking the relevant SAM action, eventually leading to an answer about the best strategy for SAM. The foregoing concept for an accident diagnosis and prognosis can give the SAM practitioners more time to take action for mitigating the consequences of the potential accident scenarios since they are made in a simple, fast, and efficient way through a prepared SAR database and it is useful especially when the plant information available for SAM is incomplete and limited. The main purpose of this paper is to (a) introduce the concept of the RISARD system proposed to support SAM and its implementation through a prepared OPR1000 plant- and MAAP code-specific SAR database and (b) assess prediction capabilities of major events expected during the evolution of a severe accident through the system.

  • 出版日期2009-10