摘要

Fluorescence-incorporated, crosslinker-free, pH- and thermoresponsive nanocarriers were prepared by the incorporation of drug molecules into the thermoresponsive nanocapsules, which composed of poly(N-isopropylacrylamide) (PNIPAAm) with carboxylic acid end groups via temperature induced self-assembling method. Well-defined, pH-responsive carboxylic acid group-ended PNIPAAm homopolymer (HOOCPNIPAAmCOOH) was synthesized by reversible addition fragmentation chain transfer polymerization with S,S-bis(,-dimethyl--acetic acid)trithiocarbonate (CMP) as a chain transfer agent. Rhodamine 6G (R6G), the model drug, was used for three kinds of application: First, the nanostructure fixing; second, the fluorescence-labeling; and last, the controlled release modeling. The transmission electron microscope images showed the solution type dosing led to the encapsulation of drug molecules into the nanocarriers, while the powder-type drug-loading process significantly contributed to the structure preservation of nanocarriers. The controlled release behaviors with various pH values and temperatures were evaluated. These multifunctional nanocarriers have potential to be applied for the biomedical therapy by stimuli-responsive controlled release.

  • 出版日期2014-2-15

全文