Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release

作者:Suofu, Yalikun; Li, Wei; Jean-Alphonse, Frederic G.; Jia, Jiaoying; Khattar, Nicolas K.; Li, Jiatong; Baranov, Sergei V.; Leronni, Daniela; Mihalik, Amanda C.; He, Yanqing; Cecon, Erika; Wehbi, Vanessa L.; Kim, JinHo; Heath, Brianna E.; Baranova, Oxana V.; Wang, Xiaomin; Gable, Matthew J.; Kretz, Eric S.; Di Benedetto, Giulietta; Lezon, Timothy R.; Ferrando, Lisa M.; Larkin, Timothy M.; Sullivan, Mara; Yablonska, Svitlana; Wang, Jingjing; Minnigh, M. Beth; Guillaumet, Gerald; Suzenet, Franck
来源:Proceedings of the National Academy of Sciences, 2017, 114(38): E7997-E8006.
DOI:10.1073/pnas.1705768114

摘要

G protein-coupled receptors ( GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and beta-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.