摘要

Density functional theory calculations have been used to study the electronic structure, lattice dynamics, and electron-phonon coupling in boron-doped silicon carbide in the cubic phase. Our results provide evidence that the recently discovered superconducting transition in boron-doped silicon carbide can be explained within a standard phonon-mediated mechanism. For the same doping rate, the coupling constant lambda in B-doped SiC is very close to that of doped diamond and twice as large as that of B-doped silicon. However, doped silicon carbide differs from its diamond counterpart as most of the electron-phonon coupling originates from low energy vibrational modes.

  • 出版日期2008-11-10