摘要

The Salmas area, in the northernmost part of the Sanandaj-Sirjan zone of Iran, contains a crystalline mafic-intermediate complex that intrudes into the Precambrian metamorphic basement complex and is composed of gabbroic and gabbrodiorite cumulates and fine-grained non-cumulate gabbronorites and diorites. These rocks have fine- to coarse-grained texture and are mainly composed of plagioclase, pyroxenes, and amphibole. Major element geochemistry indicates that the pluton has a low-K with tholeiitic affinity. Variations of major and trace elements on Harker diagrams, including negative correlations MgO, Fe2O3, CaO, and Co and positive correlations Na2O, K2O, Rb, Ba, and La, with increasing SiO2 and chondrite-normalized REE patterns, suggest that fractional crystallization of gabbroic rocks could have played a significant role in the formation of evolved rocks. The chondrite-normalized REE patterns are not fractionated (La-N /Lu-N =1.3-5.4) and display strong Eu anomalies (Eu/Eu* = 1.15-1.76) in cumulate rocks, which we attributed to cumulus plagioclase. Sr and Nd isotopic ratios vary from 0.704698 to 0.705866 and from 0.512548 to 0.512703, respectively. Gabbronorites with high Nd-143/Nd-144 ratios, low Sr-87/Sr-86 ratios, and high MgO, Ni, and Cr contents indicate that they were generated from relatively primitive magmas. We used petrogenetic modelling to constrain sources. Trace element ratio modelling indicates that the gabbroic rocks were generated from a spinel-peridotite source via 5-20% degrees of fractional melting at a depth of approximate to 52km. Major and REE modelling shows that the diorites are the products of fractional crystallization of gabbronorites.