摘要

To further understand the fire behavior of concrete floor slabs, this paper examines the results of a fire test on continuous concrete floor slabs in a full-scale three-story steel-framed building. The case under experimental study models the reality of fire conditions more closely than previous tests and involves the construction of a special furnace on the building's second floor to heat four panels (two by two) and steel beams on the third floor. The experimental results are investigated in detail and consider the furnace temperature, temperature distribution, vertical and horizontal deflections, and failure patterns of the structural elements during the heating and cooling phases. The testing data indicate that the number and locations of the heated panels in the floor also have a considerable effect on the continuous concrete floor's fire behavior, apart from the boundary constraint conditions provided by the adjacent structural members. In addition, the steel beams exhibit better fire-resistant performance than that observed in standard fire tests depending on their structural integrity and the interaction between structural members. In contrast to its high-strength bolt connections, the building's welded-bolted connections do not cause local buckling of the steel beams subjected to fire.