Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding

作者:Bennett Ryan P; Presnyak Vladimir; Wedekind Joseph E; Smith Harold C*
来源:Journal of Biological Chemistry, 2008, 283(12): 7320-7327.
DOI:10.1074/jbc.M708567200

摘要

Human APOBEC3G ( hA3G) is a host factor that defends against HIV-1 as well as other exogenous retroviruses and endogenous retroelements. To this end, hA3G is restricted to the cytoplasm of T lymphocytes where it interacts with viral RNA and proteins to assemble with viral particles causing a post-entry block during reverse transcription. hA3G also exhibits a mechanism to inhibit the reverse transcription of retroelements by RNA binding and sequestration into mRNA processing centers in the cytoplasm. We have determined that the molecular basis for this specialized property of hA3G is a novel cytoplasmic retention signal ( CRS) that is necessary and sufficient to restrict wild-type hA3G and chimeric constructs to the cytoplasm. The CRS resides within amino acids 113-128 and is embedded within a basic flanking sequence and does not require RNA binding to retain hA3G in the cytoplasm. Paralogs of hA3G that have nuclear or cytoplasmic distributions differ from hA3G within the region encompassing the CRS motif with respect to charge and amino acid composition. We propose that the CRS enables hA3G to interact with cytoplasmic factors, and thereby enables hA3G to serve in host cell defense by restricting an antiviral sentinel to the cytoplasm. The CRS lies in a region involved in both Gag and Vif interactions; therefore, identification of this motif has important implications for the design of therapeutics that target HIV-1 while maintaining antiviral and cellular functions.

  • 出版日期2008-3-21