Association between environmental exposure to p, p '-DDE and lindane and semen quality

作者:Pant Niraj*; Shukla M; Upadhyay A D; Chaturvedi P K; Saxena D K; Gupta Y K
来源:Environmental Science and Pollution Research, 2014, 21(18): 11009-11016.
DOI:10.1007/s11356-014-2965-x

摘要

Scientific concern exists about the toxic effect of dichlorodiphenyldichloroethylene (p, p'-DDE) and lindane on male infertility, and the mechanism underlying male reproductive toxicity of this pesticide remains unanswered. We investigated not only the possible association between the chlorinated pesticide levels and semen quality in nonoccupationally exposed men, but also the probable mode of action using mitochondrial membrane potential (MMP), reactive oxygen species (ROS), lipid peroxidation (LPO), and sperm chromatin structure assay (SCSA). A study in 278 men (21-40 years old) who visited Obstetrics and Gynecology Department, KGMU, Lucknow, for semen analysis was conducted. We performed semen analysis according to the WHO guidelines, while p, p'-DDE and lindane analysis was done by the GLC and LPO by the spectrophotometer, and the sperm mitochondrial status, ROS, and SCSA with the flow cytometer. The questionnaire data showed no significant difference in the demographic characteristics between the two groups, i.e., trying to conceive > 1 year and proven fertility. However, a significant difference in the concentration of p, p'-DDE and lindane was observed between the groups. When the subjects were divided among four categories by quartile of exposure, the subjects in the highest quartile showed low sperm motility as compared to the subjects in the lowest quartile. Pearson's correlation showed a significant negative correlation between semen p, p'-DDE, lindane level, and sperm quality and positive association with the number of cells with depolarized mitochondria, elevation in ROS production and LPO, and DNA fragmentation index (DFI). The findings are suggestive that these toxicants might cause a decline in semen quality, and these effects might be ROS, LPO, and mitochondrial dysfunction mediated.