摘要

The diversity of solutions is very important for multi-objective evolutionary algorithms to deal with multi-objective optimization problems (MOPs). In order to achieve the goal, a new orthogonal evolutionary algorithm based on objective space decomposition (OEA/D) is proposed in this paper. To be specific, the objective space of an MOP is firstly decomposed into a set of sub-regions via a set of direction vectors, and OEA/D maintains the diversity of solutions by making each sub-region have a solution to the maximum extent. Also, the quantization orthogonal crossover (QOX) is used to enhance the search ability of OEA/D. Experimental studies have been conducted to compare this proposed algorithm with classic MOEA/D, NSGAII, NICA and D2MOPSO. Simulation results on six multi-objective benchmark functions show that the proposed algorithm is able to obtain better diversity and more evenly distributed Pareto fronts than other four algorithms.