摘要

MicroRNAs (miRNAs) are short, non-coding RNAs that negatively regulate target gene expression, and play an important role in cerebral ischemic injury. MiR-146a has been reported to be highly related to cell invasion, metastasis, immunity, inflammation and apoptosis. Previous studies have indicated that miR-146a can either inhibit or promote apoptosis through different pathophysiological processes. In our previous study, miR-146a in the blood was down-regulated during acute ischemic stroke. However, the connection between miR-146a and acute cerebral ischemic injury and the mechanism underlying the connection remain unclear. Here, we aimed to investigate the role of miR-146a and its possible target genes in human SK-N-SH cells subjected to 16 h of oxygen-glucose deprivation and 12 h of reperfusion (OGD/R) injury. Cells were transfected with miR-146a mimic or inhibitor to alter the expression of miR-146a. MiR-146a in the SK-N-SH cells was down-regulated after OGD/R injury. Moreover, bioinformatics analysis and dual luciferase assays demonstrated that miR-146a directly recognized the 3'-UTR of the pro-apoptotic genes, Caspase7 and Bcl-2-associated transcription factor 1 (Bclaf1). Furthermore, miR-146a over-expression effectively decreased the mRNA and protein expression of Caspase7 and Bclaf1, and aggravated OGD/R-induced cell apoptosis; in contrast, miR-146a down-regulation was neuroprotective. In conclusion, our study revealed that miR-146a contributes to OGD/R injury in vitro, while negatively regulating the pro-apoptotic genes, Caspase7 and Bclaf1. This special mechanism provides new insight into miRNA regulatory networks. In addition, miR-146a may offer a potential therapeutic approach to cerebral ischemic injury.