摘要

Modern understanding of the tectonic evolution of the Appalachian orogen allows for recognition of most of the first-order lithotectonic elements and events of the mountain belt. Comparison of these features and events along the length of the orogen indicates that the northern and southern segments display distinct first-order differences. Contrasts between these segments existed from the onset of the Appalachian cycle. It has been recognized that Mesoproterozoic basement rock types south of approximately Pennsylvania are different from those to the north and more recently it has been shown that basement rocks in each area display distinct Nd and Pb isotopic signatures. Also, an early, ca. 770-680 Ma, Cryogenian stage of rifting is recorded in the southern Appalachians, but is not documented in the northern part of the orogen. During the Paleozoic Appalachian cycle, the accretion of peri-Gondwanan terranes was partitioned; Carolinia and Suwannee are confined to the southern Appalachians, and Ganderia, Avalonia, and Meguma to the northern Appalachians. Consequential to this partitioning, associated magmatism and some of the attendant tectonism is asymmetrically distributed between the two segments of the orogen. The terminal Appalachian collisional event, the Carboniferous Alleghanian orogeny, is distinctly different in the two segments of the orogen. The volumes of Alleghanian magmatic rocks in the northern and southern Appalachians are distributed asymmetrically and Carboniferous tectonic styles contrast sharply between the two regions. In addition, there is a modern first-order topographic change in the foreland of the orogeny. The southern foreland is characterized by a continuous, elevated plateau, whereas north of the New York promontory, foreland topography is more varied. %26lt;br%26gt;Throughout the Appalachian cycle, all of these varied first-order changes occur in the vicinity of the New York promontory, suggesting that the promontory represents an enduring, fundamental boundary in the orogen. The nature and duration of differences between the northern and southern segments of the orogen indicate that this boundary was not an extrinsic ephemeral feature, such as a plate triple junction or hot spot. Rather, we suggest that an intrinsic difference in the Laurentian crustal/lithospheric(?) substrate present from the outset of the Appalachian cycle, as reflected by contrasts in the Mesoproterozoic basement in each segment, could be the root cause of these significant contrasts.

  • 出版日期2013