摘要

Many sacoglossan sea slugs incorporate intact, functional chloroplasts from their algal food sources into specialized cells lining the digestive diverticulum. The chloroplasts in adults of Elysia clarki are photosynthetically functional for many months. Members of this species feed on algae in the Ulvophyceae, including species of Penicillus and Bryopsis. However, other sacoglossans (Elysia patina, Elysia rufescens, and Placida kingstoni) use similar algal food sources as do adults of E. clarki, but are unable to maintain the chloroplasts for more than a week, with individuals of P. kingstoni apparently being unable to maintain chloroplasts for > 24 h. We have examined chloroplast sequestering cells of these species looking for morphological differences that may help explain the variation in chloroplast sequestration and maintenance among them. Our results indicate that P. kingstoni does not actively sequester chloroplasts at all, digesting them instead. However, the plastid sequestering mechanisms of individuals of E. patina and E. rufescens are similar to those of E. clarki, and the degradation of chloroplasts by specimens of E. patina is ultrastructurally similar to the same process in E. clarki, although chloroplast degradation occurs much more slowly in individuals of E. clarki. Our results suggest that species-level differences in the digestive capability of the phagosomes involved in the uptake of chloroplasts account for variation in the length of these kleptoplastic associations.

  • 出版日期2010