摘要

Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box-Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 degrees C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10-40 nm, and the length was 100-400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H(2)SO(4)-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.