A novel method to fabricate thermoresponsive microstructures with improved cell attachment/detachment properties

作者:He, Xiao-Ling; Nie, Ping-Ping; Chen, Bi-Zhou; Li, Xiang-Xu; Chen, Li*; Guo, Gang; Zhang, Rui
来源:Journal of Biomedical Materials Research Part A, 2012, 100A(8): 1946-1953.
DOI:10.1002/jbm.a.34138

摘要

A novel, simple, and rapid method to fabricate thermoresponsive micropatterned substrate for cell adhesion, growth, and thermally induced detachment was developed. Thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), was grafted onto the surface of polystyrene (PS) film with microstructure by plasma-induced graft polymerization technique. The thermoresponsive micropatterned films were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). These results indicated that the grafting ratio of PNIPAAm increased with increasing roughness of PS film. However, the microstructures on the substrate were not affected by grafted PNIPAAm. The optimal grafting conditions, such as plasma treatment time, monomer concentration, graft polymerization time, and graft medium were investigated. The thermoresponsive micropatterned films were investigated with the fibroblast cell (L929) adhesion, proliferation, and thermally induced detachment assay. The microstructure on the thermoresponsive micropatterned substrate facilitated cell adhesion above the lower critical solution temperature (LCST) of PNIPAAm and cell detachment below the LCST. Moreover, it can be used to regulate cell organization and tissue growth.

全文