摘要

Accurate determination of laser intensity is of fundamental importance to study various phenomena in intense laser-atom/molecule interactions. We theoretically demonstrate a scheme to measure laser intensity by examining the holographic structure originating from the interference between the direct and near-forward rescattering electrons in strong-field tunneling ionization. By adding a weak second-harmonic field with polarization orthogonal to the strong fundamental driving field, the interference pattern oscillates with the changing relative phases of the two-color fields. Interestingly, the amplitude of this oscillation in the photoelectron momentum spectrum depends on the parallel momentum. With the quantum-orbit analysis, we show that the amplitude of the oscillation minimizes when the time difference between the recollision and ionization of near-forward rescattering electron is half cycle of the fundamental driving field. This enables us to measure accurately the laser intensity by seeking the minimum of the oscillation amplitude. Moreover, we show that this minimum can be determined without scanning the relative phases, instead, by just monitoring the interference patterns for two relative phases. This facilitates the application of our scheme in experiment.