摘要

Climate model simulations of changes to Earth's energy budget are fundamental to improve understanding of both historical and future climate change. However, coupled models are prone to "drift" (i.e., they contain spurious unforced trends in state variables) due to incomplete spinup or nonclosure of the energy budget. This work assesses the globally integrated energy budgets of 25 models in phase 5 of CMIP (CMIP5). It is shown that for many of the models there is a significant disagreement between ocean heat content changes and net top-of-atmosphere radiation. The disagreement is largely time-constant and independent of forcing scenario. Furthermore, most of the nonconservation seems to occur as a result of energy leaks external to the ocean model realm. After drift correction, the time-varying energy budget is consistent at decadal time scales, and model responses to climate forcing are not sensitive to the magnitude of their drift. This demonstrates that, although drift terms can be significant, model output can be corrected post hoc without biasing results.

  • 出版日期2016-3
  • 单位CSIRO