摘要

We present a new implementation of a computationally efficient crystal plasticity model in an implicit finite element (FE) framework. In recent publications, we have reported a standalone version of a crystal plasticity model based on fast Fourier transforms (FFTs) and termed it the spectral crystal plasticity (SCP) model. In this approach, iterative solvers for obtaining the mechanical response of a single crystal of any crystallographic orientation subjected to any deformation mode are replaced by a database of FFTs that allows fast retrieval of the solution. The standalone version of the code facilitates simulations of relatively simple monotonic deformation processes under homogeneous boundary conditions. In this paper, we present a new model that enables simulations of complex, non-monotonic deformation process with heterogeneous boundary conditions. For this purpose, we derive a fully analytical Jacobian enabling an efficient coupling of SCP with implicit finite elements. In our implementation, an FE integration point can represent a single crystal or a polycrystalline material point whose meso-scale mechanical response is obtained by the mean-field Taylor-type homogenization scheme. The finite element spectral crystal plasticity (FE-SCP) implementation has been validated for several monotonic loading conditions and successfully applied to rolling and equi-channel angular extrusion deformation processes. Predictions of the FE-SCP simulations compare favorably with experimental measurements. Details of the FE-SCP implementation and predicted results are presented and discussed in this paper.

  • 出版日期2015-5