摘要

We present a comprehensive study on radar scattering cross section of mesospheric echoes and mesospheric turbulence parameters based on several days of observations made during two rocket-radar campaigns, one in July 2004 and another in April 2005, meant for studying mesospheric turbulence. Radar scattering cross section was found to have large local time and day-to-day variability and was found to be as low as 3.1 x 10(-18) m(-1) and as high as 1 x 10(-14) m(-1) and the median values were in the range of 4.4 x 10(-18)-4.7 x 10(-16) m(-1). Echoes connected with the low value of scattering cross section could be detected only when a long pulse width was used. Turbulence parameters were found to vary remarkably with time of the day and also from one day to another. In July, the turbulent kinetic energy (TKE) dissipation rate, outer scale and inner scale were in the range of 0.08-150 mW/kg, 33-1500 m, and 1.9-50 m, respectively, and their median values were in the range of 5-52 mW/kg, 293-977 m, and 2-31 m, respectively. In April, these estimates were in the range of 0.9-69 mW/kg, 38-1081 m, and 4-21 m, respectively, and their median values were in the range of 1-12 mW/kg, 140-378 m, and 8-13 m, respectively. These parameters are found to agree quite well with those estimated from rocket-borne observations, which were in the range of 4-117 mW/kg, 220-1475 m, and 15-31 m, respectively, in July and 2-36 mW/kg, 170-680 m, and 17-37 m, respectively, in April. Interestingly, the inner and outer scales estimated using both radar and rocket observations agree exceedingly well with model values. These results are compared in detail with those reported from low, middle and high latitudes including model and discussed in the light of current knowledge of mesospheric turbulence.