摘要

Flotation as a kinetic and thermodynamic phenomenon is a random process. The random variable determining the number of particles in flotation, attached permanently to the bubble surface, and consequently also the recovery, depend on time. Numerous models of flotation kinetics have been worked out to describe this dependence. Each of these models covers in fact a separate aspect of the problem but they complement each other. The paper presents a detailed analysis of the models based on the kinetics of chemical reactions and on the model of chemical absorption. It results from analysis of these models that in the case of flotation of the feed which is non-homogeneous with respect to flotation properties in the initial moments of the process, the particles undergoing flotation have the highest flotation properties according to the equation of zero order and, next, according to the equation of 1\2 order. With time, the particles of decreasing ability to flotation undergo flotation and, simultaneously, the order of flotation kinetics increases. Narrow size-and-density coal fractions of intermediate floatabilty (type 33 of Polish classification) float according to the first order kinetic equation. From the theoretical point of view they can be assumed to be a homogenous material with respect to flotation properties.

  • 出版日期2007