摘要

This paper presents numerical simulations of thermoelectric materials for local Seebeck coefficient measurements by a heated microprobe. The Galerkin finite element method is used to solve the governing equations with boundary conditions to obtain temperature and induced thermoelectric voltage distributions. The measured local Seebeck coefficients obtained from the potential Seebeck microprobe (PSM) model and the simplified PSM model are compared; the influence of probe tip size and heating time is investigated. A method is proposed for obtaining the spatial resolution of the PSM apparatus by increasing inhomogeneity size gradually. The simulation results indicate that the simplified PSM model can be efficiently used to simulate the local Seebeck coefficient measurements by the PSM apparatus. The temperature distribution is similar to the voltage distribution for homogeneous thermoelectric material but is different from the distorted voltage distribution for thermoelectric material with inhomogeneity. The spatial resolution of the PSM apparatus increases with decreasing probe tip size, heating time, and thermal conductivity of the thermoelectric material.

  • 出版日期2011