A Variational Bayesian Superresolution Approach Using Adaptive Image Prior Model

作者:Zhao Shengrong; Jin Renchao*; Xu Xiangyang; Song Enmin; Hung Chih Cheng
来源:Mathematical Problems in Engineering, 2015, 2015: 469859.
DOI:10.1155/2015/469859

摘要

The objective of superresolution is to reconstruct a high-resolution image by using the information of a set of low-resolution images. Recently, the variational Bayesian superresolution approach has been widely used. However, these methods cannot preserve edges well while removing noises. For this reason, we propose a new image prior model and establish a Bayesian superresolution reconstruction algorithm. In the proposed prior model, the degree of interaction between pixels is adjusted adaptively by an adaptive norm, which is derived based on the local image features. Moreover, in this paper, a monotonically decreasing function is used to calculate and update the single parameter, which is used to control the severity of penalizing image gradients in the proposed prior model. Thus, the proposed prior model is adaptive to the local image features thoroughly. With the proposed prior model, the edge details are preserved and noises are reduced simultaneously. A variational Bayesian inference is employed in this paper, and the formulas for calculating all the variables including the HR image, motion parameters, and hyperparameters are derived. These variables are refined progressively in an iterative manner. Experimental results show that the proposed SR approach is very efficient when compared to existing approaches.