摘要

Age structure of a population often plays a significant role in the spreading of a disease among its members. For instance, childhood diseases mostly affect the juvenile part of the population, while sexually transmitted diseases spread mostly among the adults. Thus, it is important to build epidemiological models which incorporate the demography of the affected populations. Doing this we must be careful as many diseases act on a time scale different from that of the vital processes. For many diseases, e.g. measles, influenza, the typical time unit is one day or one week, whereas the proper time unit for the vital processes is the average lifespan in the population; that is, 10-100 years. In such a case, the epidemiological model with vital dynamics becomes a multiple time scale model and thus it often can be significantly simplified by various asymptotic methods. The presented paper is concerned with an SIRS type disease spreading in a population with a continuous age structure modelled by the McKendrick-von Foerster equation. We consider a disease with a quick recovery rate in a large population. Though it is not too surprising that in such a model the introduced disease quickly vanishes, the result is mathematically interesting as the error estimates are uniform on the whole in finite time interval, in contrast to the typical results based on the Tikhonov theorem and classical asymptotic expansions.

  • 出版日期2014-10