The effect of liquid film on liquid droplet impingement erosion

作者:Fujisawa Nobuyuki*; Yamagata Takayuki; Saito Kengo; Hayashi Kanto
来源:Nuclear Engineering and Design, 2013, 265: 909-917.
DOI:10.1016/j.nucengdes.2013.07.039

摘要

In the present paper, the pipe-wall thinning due to liquid droplet impingement erosion is studied experimentally by using a high-speed conical spray under the influences of liquid film on the target specimen. The size of the droplets considered is an order of tens of micrometers in diameter, which is the same order as those expected in the pipeline of nuclear/fossil power plants. In order to evaluate the erosion rate by the liquid droplet impingement under the influence of liquid film, the experiments are conducted by various combinations of the specimen diameters and the standoff distances of the spray from the nozzle. The experimental results show that the erosion depth increases linearly with the local flow volume, indicating the presence of terminal stage of erosion. The present results indicate that the erosion rate increases with decreasing the specimen diameter and increases slightly with increasing the standoff distance. This result combined with the theoretical consideration of the liquid film on the specimen leads to the conclusion that the erosion rate increases with decreasing the liquid film thickness, which supports the numerical result of liquid droplet impingement erosion in literature. Then, the erosion model for predicting the erosion rate by the liquid droplet impingement is proposed considering the influence of the liquid film.

  • 出版日期2013-12