摘要

The present paper proposes a new type of hydrodynamic lubricated tilted pad thrust slider bearing which is augmented with the boundary slippage at the stationary contact surface in the inlet zone. This design is of purpose to reduce the friction coefficient but increase the load-carrying capacity of the bearing. A theoretical analysis is presented for this bearing. Computational results and design guides for this bearing are given. It is found that the most increase of the carried load of the bearing by the boundary slippage is around 30 %, while the most reduction of the friction coefficient of the bearing by the boundary slippage is more than 40 %. This advantage is reached when the boundary slippage zone occupies 80 % of the bearing lubricated area and the fluid-contact interfacial shear strength at the boundary slippage interface is very low.

全文