摘要

The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

全文