Antibiotic Resistance in an Indian Rural Community: A %26apos;One-Health%26apos; Observational Study on Commensal Coliform from Humans, Animals, and Water

作者:Purohit Manju Raj; Chandran Salesh; Shah Harshada; Diwan Vishal; Tamhankar Ashok J; Lundborg Cecilia Stal**y
来源:International Journal of Environmental Research and Public Health, 2017, 14(4): 386.
DOI:10.3390/ijerph14040386

摘要

Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source-and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes bla(CTX-M-9) and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.

  • 出版日期2017-4