摘要

This paper describes the formulations of the method of fundamental solutions (MFS), which is a famous meshless numerical method representing a sought solution by a series of fundamental solutions to solve slow mixed convections in containers with discontinuous boundary data. In the derivations, the fundamental solutions were obtained by using the Hormander operator decomposition technique. All the velocities, temperatures, pressures, stresses and thermal fluxes corresponding to the fundamental solutions were addressed explicitly in tensor forms. Although the MFS is highly accurate for smooth boundary data, its convergence becomes poor when it is applied to problems with discontinuous boundary data. To compensate for this drawback, we enriched the MFS by adding the local discontinuous solutions to the series of fundamental solutions. This enriched MFS was applied to solve the benchmark problems of a lid-driven cavity and natural convection in rectangular containers. In addition, the numerical solutions were compared with the analytical solutions. Then, the meshless numerical method was further utilized to solve mixed convections in a triangular cavity and a cavity with a cosine-shaped bottom. These numerical results demonstrated the applicability of the enriched MFS to two-dimensional mixed convections in containers with discontinuous boundary data.

  • 出版日期2011-5-30