摘要

We report on a surface design of thin film silicon solar cells based on silver nanoparticle arrays and blazed grating arrays. The light transmittance is increased at the front surface of the cells, utilizing the surface plasmon resonance effect induced by silver nanoparticle arrays. As a reflection layer structure, blazed gratings are placed at the rear surface to increase the light reflectance at bottom of the thin film cells. With the combination of the silver nanoparticle arrays and the blazed gratings, the light trapping efficiency of the thin film solar cell is characterized by its light absorptance, which is determined from the transmittance at front surface and the reflectance at bottom, via the finite-difference time-domain (FDTD) numerical simulation method. The results reveal that the light trapping efficiency is enhanced as the structural parameters are optimized. This work also shows that the surface plasmon resonance effect induced by the silver nanoparticles and the grating characteristics of the blazed gratings play crucial roles in the design of the thin film silicon solar cells.