摘要

Multifunctional nanoplatforms were prepared via floating self-assembly using a hard nanoparticle (NP) as the core and a modified polymer (MP, cholesterol-chitosan linked with polyethylenimine) droplet as the shell in a single-pass aerosol nanoencapsulation process. The floating hard NPs (silica, calcium carbonate, gold-decorated graphene oxide, and thiol-capped gold) were directly injected into MP droplets at the opening of a spraying device. Subsequently, the solvent was thermally extracted from the droplets, resulting in the formation of biofunctional nanoplatforms. Measured in vitro, the genes complexed with the nanoplatforms were transfected into target cells, exhibiting higher efficiencies for the MP particles alone without a significant increase in in vitro cell cytotoxicity. The aerosol encapsulation could be further extended to prepare other combinations [gold-silica and gold-calcium carbonate including doxorubicin (Dox)] using the MP, and their hybrid natures demonstrated photothermal cancer cell killing and chemo-thermal Dox release capabilities through surface plasmon resonance heating.

  • 出版日期2016-7-20