Diastereoisomers of Ruthenium Dyes with Unsymmetric Ligands for DSC: Fundamental Chemistry and Photovoltaic Performance

作者:Li Jheng Ying; Lee Chia; Chen Chia Yuan; Lee Wen Long; Ma Ren; Wu Chun Guey*
来源:Inorganic Chemistry, 2015, 54(21): 10483-10489.
DOI:10.1021/acs.inorgchem.5b01967

摘要

A new thiocyanic acid-free ruthenium sensitizer, CYC-B29, containing two unsymmetrical ancillary ligands, was synthesized, and its three diastereoisomers CYC-B29-CC, CYC-B29-TT, and CYC-B29-CT with significantly different optical, electronic, and electrochemical properties were carefully separated. CYC-B29-TT with the smallest size has the strongest absorption coefficient of the MLCT band, the shortest gimel(max), the lowest highest occupied molecular orbital level and the highest dye loading. Therefore, dye-sensitized solar cell based on CYC-B29-TT has the highest efficiency, which is two times higher than that of CYC-B29-CC-sensitized device and 10% higher than that of N719-based cell. Time-dependent density functional theory-calculated transition bands for the three isomers are not identical, and only CYC-B29-TT has the calculated transition bands close to the experimental absorption profile. Although the calculated transition bands for CYC-B29-CC and CYC-B29-CT are not consistent with the experimental data, the ground-state vertical excitation energy with oscillator strength and electron-density difference map data combining with the dye loading predict correctly the order of the photocurrent for the three isomers sensitized devices.