摘要

Automated and semi-automated detection and segmentation of spinal and vertebral structures from computed tomography (CT) images is a challenging task due to a relatively high degree of anatomical complexity, presence of unclear boundaries and articulation of vertebrae with each other, as well as due to insufficient image spatial resolution, partial volume effects, presence of image artifacts, intensity variations and low signal-to-noise ratio. In this paper, we describe a novel framework for automated spine and vertebrae detection and segmentation from 3-D CT images. A novel optimization technique based on interpolation theory is applied to detect the location of the whole spine in the 3-D image and, using the obtained location of the whole spine, to further detect the location of individual vertebrae within the spinal column. The obtained vertebra detection results represent a robust and accurate initialization for the subsequent segmentation of individual vertebrae, which is performed by an improved shape-constrained deformable model approach. The framework was evaluated on two publicly available CT spine image databases of 50 lumbar and 170 thoracolumbar vertebrae. Quantitative comparison against corresponding reference vertebra segmentations yielded an overall mean centroid-to-centroid distance of 1.1 mm and Dice coefficient of 83.6% for vertebra detection, and an overall mean symmetric surface distance of 0.3 mm and Dice coefficient of 94.6% for vertebra segmentation. The results indicate that by applying the proposed automated detection and segmentation framework, vertebrae can be successfully detected and accurately segmented in 3-D from CT spine images.

  • 出版日期2015-8