ANALYSIS OF FULLERENE-C-60 AND KINETIC MEASUREMENTS FOR ITS ACCUMULATION AND DEPURATION IN DAPHNIA MAGNA

作者:Tervonen Kukka*; Waissi Greta; Petersen Elijah J; Akkanen Jarkko; Kukkonen Jussi V K
来源:Environmental Toxicology and Chemistry, 2010, 29(5): 1072-1078.
DOI:10.1002/etc.124

摘要

A simple method for analyzing masses of water suspended fullerenes (nC(60)) in Daphnia magna by extracting to toluene and measuring by ultraviolet-vis spectrophotometry was developed. This method was used to assess bioaccumulation and depuration rates by daphnia after nC(60) exposure in artificial freshwater. Accumulation was rapid during the first few hours, and based on accumulation modeling, 90% of the steady-state concentration was reached in 21 h. After exposure for 24 h to a 2 mg/L fullerene solution, the daphnia accumulated 4.5 +/- 0.7 g/kg wet weight, or 0.45% of the organism wet mass, Daphnids exposed to 2 mg/L fullerenes for 24 h eliminated 46 and 74% of the accumulated fullerenes after depuration in clean water for 24 and 48 h, respectively. Transmission electron microscopy revealed that the majority of the fullerenes present in the gut of daphnids were large agglomerates. The significant fullerene uptake and relatively slow depuration suggest that D. magna may play a role as a carrier of fullerene from one trophic level to another. Additionally. D. magna may impact the fate of suspended fullerene particles in aquatic ecosystems by their ability to pack fullerene agglomerates into larger particles than were found in the exposure water, and then excrete agglomerates that arc not stable in water, causing them to settle out of solution. This process decreases fullerene exposure to other aquatic organisms in the water column but may increase exposure to benthic organisms in the sediment. Environ. Toxicol. Chem. 2010;29:1072-1078.

  • 出版日期2010-5