摘要

This paper presents a macroscopic constitutive model which is able to reproduce the thermo-mechanical behaviors of the super-elastic SMA undergoing plastic strain. A mechanical constitutive equation, which predicts the stress-strain response of the SMA undergoing plastic strain, is developed based on the expression of Gibbs free energy with plastic strain. A linear plastic constraint equation is supposed to describe the effect of plasticity on the phase transformation behaviors of SMA. A sine-type phase transformation equation is established to describe the phase transformation behaviors of the SMA undergoing plastic strain. The mechanical constitutive equation, plastic constraint equation, and phase transformation equation together compose the presented macroscopic constitutive model which reproduces the thermo-mechanical behaviors of the SMA undergoing plastic strain. Especially all material constants related to the presented macroscopic constitutive model can be determined through macroscopic experiments. Therefore it is easy to use this presented model for the practical applications of SMA. The mechanical behaviors of the supper-elastic SMA undergoing plastic strain and the effect of plasticity are numerically simulated by the presented macroscopic constitutive model. Results show that the presented macroscopic constitutive model can effectively reproduce the thermo-mechanical behaviors of the super-elastic SMA and express the effect of plasticity.