摘要

Thermal ground testing is an accepted and frequently used method for simulating the aerodynamic heating of high speed flight vehicles. A numerical method based on a finite volume method for a quartz lamp heating system, used in thermal testing, is proposed. In this study, the unstructured finite-volume method (UFVM) for radiation has been formulated and implemented in a fluid flow solver GTEA on unstructured grids. For comparison and validation of the proposed method, a 2D furnace with cooling pipes was chosen. The results obtained from the proposed FVM agreed well with the exact solutions. Numerical results show that the quartz lamp can be simplified as a slat with the same temperature radiation source, and a simplified 2D thermal testing case was then simulated with the coupling effects of radiation, convection, and conduction heat transfer. Different temperature loading curves and ratios of intervals between the lamps and lamp length (l/s) were studied using the proposed method. The radiation heat flux on the metal surface was a wave-shaped curve. Comparing the different interval ratios, we found that the smaller the interval ratio, the larger the maximum value and the smaller the difference between the maximum and minimum heat flux.