摘要

Polymer nanodielectrics have become attractive for practical applications such as electric energy storage and electromechanical actuation. However, to enhance the apparent dielectric constant of polymer nanodielectrics, a significant amount (%26gt;30 vol %) of spherical particles needs to be incorporated into the polymer matrix. As a consequence, melt-processing of polymer nanodielectrics into uniform thin films becomes difficult at such a high filler content, and electric breakdown strength will greatly decrease. In this work, we describe a three-phase composite approach towards high energy density nanodielectrics at low filling ratios. In this approach, a highly polarizable tetrameric metallophthalocyanine (TMPc) initiator is coated onto 68 nm BaTiO3 nanoparticles, from which poly(methyl methacrylate) (PMMA) brushes are grafted using atom transfer radical polymerization for the nanoparticles to be uniformly dispersed in a poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] matrix. For comparison, two-phase P(VDF-HFP)/BaTiO3 composites without the TMPc interfacial layer are also prepared. Owing to the high polarizability of the TMPc interface layer, the three-phase composite films exhibit higher dielectric constant and thus higher energy density than the two-phase composite films at volume-filling ratios below 5 vol %. Therefore, these high energy density three-phase nanodielectrics with a low filling ratio are promising for melt-processing into thin dielectric films.

  • 出版日期2014-12-15