摘要

The effects of dynamic interactions between hydrogen and a stress-induced martensite transformation on the recovery of deteriorated tensile properties by ageing in air at room temperature have been investigated for a Ni-Ti superelastic alloy. A specimen is subjected to single stress-induced martensite and reverse transformations immediately after hydrogen charging. Upon tensile testing, brittle fracture occurs in the latter half of the elastic deformation region of the martensite phase after the stress-induced martensite transformation. Upon ageing before the tensile test, fracture occurs during the stress-induced martensite transformation. In addition, the nano- and micro-morphologies of the brittle outer part of the fracture surface of the specimen are changed by ageing. Thus, the tensile properties markedly deteriorate, rather than recover, by ageing. The present results clearly indicate that dynamic interactions between hydrogen and the stress-induced martensite transformation have serious after-effects on hydrogen embrittlement of Ni-Ti superelastic alloy.

  • 出版日期2017