Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats

作者:Fu, Shao-Zhi*; Meng, Xiao-Hang; Fan, Juan; Yang, Ling-Lin; Wen, Qing-Lian; Ye, Su-Juan; Lin, Sheng; Wang, Bi-Qiong; Chen, Lan-Lan; Wu, Jing-Bo; Chen, Yue; Fan, Jun-Ming; Li, Zhi
来源:Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2014, 102(3): 533-542.
DOI:10.1002/jbm.b.33032

摘要

This study prepared a composite scaffold composed of curcumin and poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) copolymer using coelectrospinning technology. Incorporation of curcumin into the polymeric matrix had an obvious effect on the morphology and dimension of PCEC/curcumin fibers. The results of in vitro anti-oxidant tests and of the cytotoxicity assay demonstrated that the curcumin-loaded PCEC fibrous mats had significant anti-oxidant efficacy and low cytotoxicity. Curcumin could be sustainably released from the fibrous scaffolds. More importantly, in vivo efficacy in enhancing wound repair was also investigated based on a full-thickness dermal defect model for Wistar rats. The results indicated that the PCEC/curcumin fibrous mats had a significant advantage in promoting wound healing. At 21 days post-operation, the dermal defect was basically recovered to its normal condition. A percentage of wound closure reached up to 93.3 +/- 5.6% compared with 76.9 +/- 4.9% of the untreated control (p < 0.05). Therefore, the as-prepared PCEC/curcumin composite mats are a promising candidate for use as wound dressing.