摘要

Deployment of small cells into existing mobile networks can improve throughput and users' quality of service. However, the new tier composed of small cells raises problems related to management of user mobility. Moving users must be able to discover cells in their neighborhood. For this purpose, the users perform neighborhood scanning. The scanning process should be frequent enough to avoid situations where the user is not aware of a close cell that has not been scanned. However, the frequent scanning of a high number of neighboring cells leads to wasting battery power for the user equipment and reducing the throughput of users. On the contrary, rare scanning can lead to a situation where a small cell is missing in the list of scanned cells, and thus, handover is not performed. This results in underutilization of the small cells and consequent overloading of macrocells. In this paper, we propose an efficient scanning algorithm suitable for future mobile networks. The objective of the proposed scheme is to maximize utilization of the small cells and to minimize energy consumption due to scanning. The proposal exploits graph theory to represent a principle of obstructed paths in combination with knowledge of the previously visited cell and the estimated distance between cells. As the results presented in this paper show, our algorithm reduces energy consumption due to scanning and enables higher exploitation of small cells by offloading macrocells.

  • 出版日期2016-2